Machine-designed statistical renderings, or visual culture in the service of artificial intelligence

Authors

  • Lidia Krawczyk Uniwersytet Komisji Edukacji Narodowej w Krakowie

DOI:

https://doi.org/10.24917/20811861.22.31

Keywords:

artificial intelligence, algorithms, visual culture, databases, computer vision, facial recognition

Abstract

We exist in a reality shaped by the digital mediation of our activities. We use software applications and online services. Our texts, emails, messages, works, and photographs circulate in virtual clouds, forming databases for technological corporations. We often use artificial intelligence without even being aware of it. Meanwhile, increasing traces of our privacy and intimacy—in the form of behavioral and biometric data—feed large foundational models, creating the so-called „ground truth.” Based on this, subsequent methods of statistical prediction and pattern optimization generate new visions of reality, pieced together from fragments of our virtual presence on platforms. Generative artificial intelligence—including large language models and machine learning algorithms used in facial recognition systems—depends on the information we habitually, commonly, and voluntarily share in the online space. The article addresses the issue of data circulation and what happens to it once it has been absorbed by technological systems.

References

Bender E.M., Koller A., Climbing towards NLU: On meaning, form, and understanding in the age of data, [w:] Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, 2020, s. 5185–5198.

Bender E.M., Gebru T., McMillan-Major A., Shmitchell S., On the dangers of stochastic parrots: Can language models be too big?, [w:] Conference on Fairness, Accountability, and Trans-parency (FAccT ’21), March 3–10, 2021, Virtual Event, Canada. ACM, New York, NY, USA, s. 610–623, https://doi.org/10.1145/3442188.3445922.

Biometric surveillance is quietly expanding: Bright-line rules are key, AI Now Institute, 11.04.2023, [on-line] https://ainowinstitute.org/publication/biometric-surveillance-is-quietly-expanding – 20.07.2024.

Buolamwini J., Gebru T., Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification, „Proceedings of Machine Learning Research” 2018, vol. 81.

Buschek Ch., Thorp J., Models all the way down, „Knowing machines”, [on-line] https://knowingmachines.org/models-all-the-way#section4 – 5.07.2024.

Cabitza F., Campagner A., Mattioli M., The unbearable (technical) unreliability of automated facial emotion recognition, „Big Data & Society”, July–December, 2022, https://doi.org/10.1177/20539517221129549.

Chmielinski K., Why AI needs a „nutrition label”, TED Salon: The Rockefeller Foundation, May 2024, [on-line] https://www.ted.com/talks/kasia_chmielinski_why_ai_needs_a_nutrition_label/transcript?subtitle=en – 21.08.2024.

Cole S., AI Video Generator Runway trained on thousands of YouTube videos without permission, 404 Media, 25.07.2024, [on-line] https://www.404media.co/runway-ai-image-generator-training-data-youtube – 23.08.2024.

Crawford K., Joler V., Anatomy of an AI system. An anatomical case study of the Amazon echo as an artificial intelligence system made of human labor, „Anatomy of AI”, 2018, [on-line] https://anatomyof.ai – 22.11.2024.

Crawford K., Atlas sztucznej inteligencji. Władza, pieniądze i środowisko naturalne, tłum. T. Chawziuk, Kraków 2021.

Crawford K., 9 ways to see a dataset: What’s at stake in examining datasets?, „Knowing Machines”, [on-line] https://knowingmachines.org/publications/9-ways-to-see/essays/9-ways-to-see-a-dataset – 22.11.2024.

Crawford K., Paglen T., Excavating AI: The politics of training sets for machine learning, „Excavating AI”, September 19, 2019, [on-line] https://excavating.ai – 22.11.2024.

Deeb-Swihart J., Polack Ch., Gilbert E., Essa I., Selfie-presentation in everyday life: A large-scale characterization of selfie contexts on Instagram, „Eleventh International AAAI Conference on Web and Social Media” 2017, vol. 11, no. 1, s. 42–51, https://doi.org/10.1609/icwsm.v11i1.14896.

Eyal N., Hoover R., Skuszeni. Jak tworzyć produkty, które kształtują nawyki konsumenckie, tłum. A. Kucharczyk-Barycza, Gliwice 2024.

Feldman Barrett L., Adolphs R., Marsella S., Martinez A.M., Pollak S.D., Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements, „Psychological Science in the Public Interest” 2019, vol. 20, iss. 1, s. 1–68, https://doi.org/10.1177/1529100619832930.

Fogg B.J., Persuasive technology. Using computers to change what we think and do, San Francisco 2012.

Fry H., Hello world. Jak być człowiekiem w epoce maszyn, tłum. S. Musielak, Kraków 2018.

Global views on A.I. 2023, Ipsos, July 2023, [on-line] https://www.ipsos.com/sites/default/files/ct/news/documents/2023-07/Ipsos%20Global%20AI%202023%20Report-WEB_1.pdf – 15.09.2024.

Grother P., Ngan M., Hanaoka K., Face Recognition Vendor Test (FRVT). Part 3: Demographic effects, National Institute of Standards and Technology, 2019, https://doi.org/10.6028/NIST.IR.8280.

Haoarchive K., What is machine learning?, „MIT Technology Review”, 17.11.2018, [on-line] https://www.technologyreview.com/2018/11/17/103781/what-is-machine-learning-we-drew-you-another-flowchart – 26.06.2024.

Hart R., Clearview AI – controversial facial recognition firm – fined $33 million for ‘illegal database’, „Forbes”, 3.08.2024, [on-line] https://www.forbes.com/sites/roberthart/2024/09/03/clearview-ai-controversial-facial-recognition-firm-fined-33-million-for-illegal-database – 10.09.2024.

Harwell D., This facial recognition website can turn anyone into a cop — or a stalker, „The Washington Post”, 14.05.2021, [on-line] https://www.washingtonpost.com/technology/2021/05/14/pimeyes-facial-recognition-search-secrecy – 30.06.2024.

Harvey A., On computer vision, UMBAU, 1/2021, [on-line] https://umbau.hfg-karlsruhe.de/posts/on-computer-vision – 26.06.2024.

Harvey A., Today’s selfie is tomorrow’s biometric profile, [w:] House of Mirrors. Artificial Intelligence As Phantasm, 2022.

Harvey A., LaPlace J., Exposing.ai, 2021, [on-line] https://exposing.ai – 30.06.2024.

He Y., She H., Beyond the great power competition narrative: Exploring labor politics and resistance behind AI innovation in China, „Georgetown Journal of Asian Affairs” 2021, vol. 7,.

Heaven W.D., Why does AI hallucinate?, „MIT Technology Review”, 18.06.2024, [on-line] https://www.technologyreview.com/2024/06/18/1093440/what-causes-ai-hallucinate-chatbots – 24.08.2024.

Heaven W.D., What is AI?, „MIT Technology Review”, 10.07.2024, [on-line] https://www.technologyreview.com/2024/07/10/1094475/what-is-artificial-intelligence-ai-definitive-guide – 20.08.2024.

Heaven W.D., AI hype is built on high test scores. Those tests are flawed, „MIT Technology Review”, 30.08.2023, [on-line] https://www.technologyreview.com/2023/08/30/1078670/large-language-models-arent-people-lets-stop-testing-them-like-they-were – 25.08.2024.

Heaven W.D., Why Meta’s latest large language model survived only three days online, „MIT Technology Review”, 18.11.2022, [on-line] https://www.technologyreview.com/2022/11/18/1063487/meta-large-language-model-ai-only-survived-three-days-gpt-3-science – 15.05.2024.

Heaven W.D., Large language models can do jaw-dropping things. But nobody knows exactly why, „MIT Technology Review”, 4.03.2024, [on-line] https://www.technologyreview.com/2024/03/04/1089403/large-language-models-amazing-but-nobody-knows-why – 20.08.2024.

Hill K., A face search engine anyone can use is alarmingly accurate, „The New York Times”, 26.05.2022, [on-line] https://www.nytimes.com/2022/05/26/technology/pimeyes-facial-recognition-search.html – 30.06.2024.

Hill K., Facial recognition led to wrongful arrests. So Detroit is making changes, „The New York Times”, 29.06.2024, [on-line] https://www.nytimes.com/2024/06/29/technology/detroit-facial-recognition-false-arrests.html – 3.08.2024.

Hill K., Your face belongs to us. A secretive startup’s quest to end privacy as we know it, New York 2023.

Hill K., Clearview AI used your face. Now you may get a stake in the company, „The New York Times”, 13.06.2024, [on-line] https://www.nytimes.com/2024/06/13/business/clearview-ai-facial-recognition-settlement.html – 30.06.2024.

Hollister S., Microsoft’s AI boss thinks it’s perfectly okay to steal content if it’s on the open web, „The Verge”, 28.06.2024, [on-line] https://www.theverge.com/2024/6/28/24188391/microsoft-ai-suleyman-social-contract-freeware – 22.11.2024.

Iwańska A., Czy europosłowie i europosłanki zagłosują przeciwko biometrycznej inwigilacji?, Fundacja Panoptykon, 12.06.2023, [on-line] https://panoptykon.org/glosowanie-ai-act-biometria – 3.07.2024.

Kopańko K., Śmieci na wejściu, śmieci na wyjściu. Tak programiści kwitują sztuczną inteligencję, „Spider’sWeb / bizblog”, 29.07.2024, [on-line] https://bizblog.spidersweb.pl/smieci-na-wejsciu-smieci-na-wyjsciu-tak-programisci-kwituja-sztuczna-inteligencje – 2.08.2024.

Li F.F., How we’re teaching computers to understand pictures, TED2015, March 2015, [online] https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures?subtitle=en 5.07.2024.

Li F.F., Yang K., Qinami K., Russakovsky O., Deng J., Towards fairer datasets: Filtering and balancing the distribution of the people subtree in the ImageNet hierarchy, [w:] Conference on Fairness, Accountability, and Transparency (FAT* ’20), January 27–30, 2020, Barcelona, https://doi.org/10.1145/3351095.3375709.

Luccioni A.S., Crawford K., The Nine Lives of ImageNet: A Sociotechnical Retrospective of a Foundation Dataset and the Limits of Automated Essentialism, „Journal of Datacentric Machine Learning Research”, 29.02.2024, [on-line] https://openreview.net/forum?id=jh0ck1bPGF – 30.06.2024.

Marcus G., Deep learning is hitting a wall, „Nautilus”, 10.03.2022, [on-line] https://nautil.us/deep-learning-is-hitting-a-wall-238440 – 24.08.2024.

Metz C., Hill K., Here’s a way to learn if facial recognition systems used your photos, „The New York Times”, 31.01.2021, [on-line] https://www.nytimes.com/2021/01/31/technology/facial-recognition-photo-tool.html – 5.07.2024.

Metz C., ʻNerd,ʼ ʻNonsmoker,ʼ ʻWrongdoerʼ: How might A.I. label you?, „The New York Times”, 20.09.2019, [on-line] https://www.nytimes.com/2019/09/20/arts/design/imagenet-trevor-paglen-ai-facial-recognition.html – 1.07.2024.

Murgia M., Who’s using your face? The ugly truth about facial recognition, „Financial Times”, 18.09.2019, [on-line] https://www.ft.com/content/cf19b956-60a2-11e9-b285-3acd5d43599e – 24.07.2024.

Murgia M., Microsoft quietly deletes largest public face recognition data set, „Financial Times”, 6.06.2019, [on-line] https://www.ft.com/content/7d3e0d6a-87a0-11e9-a028-86cea8523dc2 – 1.07.2024.

Nicoletti L., Bass D., Humans are biased. Generative AI is even worse, „Bloomberg”, 9.06.2023, [on-line] https://www.bloomberg.com/graphics/2023-generative-ai-bias – 23.08.2024.

Obem A., Szymielewicz K., Sztuczna inteligencja non-fiction, Fundacja Panoptykon, 2020, [on-line] https://panoptykon.org/sztuczna-inteligencja-non-fiction – 2.04.2024.

O’Neil C., Broń matematycznej zagłady. Jak algorytmy zwiększają nierówności i zagrażają demokracji, tłum. M.Z. Zieliński, Warszawa 2017.

Pearson J., Microsoft deleted a massive facial recognition database, but it’s not dead, „Vice”, 6.06.2019, [on-line] https://www.vice.com/en/article/microsoft-deleted-a-facial-recognition-database-but-its-not-dead – 1.07.2024.

Perrigo B., OpenAI used Kenyan workers on less than $2 per hour to make ChatGPT less toxic, „Time”, 18.01.2023, [on-line] https://time.com/6247678/openai-chatgpt-kenya-workers 18.08.2024.

Perrigo B., TikTok’s subcontractor in Colombia under investigation for traumatic work, „Time”, 10.11.2022, [on-line] https://time.com/6231625/tiktok-teleperformance-colombia-investigation 15.08.2024.

Pontin J., Artificial intelligence with help from the humans, „The New York Times”, 25.03.2007, [on-line] https://www.nytimes.com/2007/03/25/business/yourmoney/25Stream.html – 18.08.2024.

Roth E., Runway’s AI video generator trained on thousands of scraped YouTube videos, „The Verge”, 25.07.2024, [on-line] https://www.theverge.com/2024/7/25/24206120/runway-ai-video-generator-scraped-youtube-videos-report – 20.08.2024.

Rouse M., Garbage in, garbage out, „Techopedia”, 4.01.2017, [on-line] https://www.techopedia.com/definition/3801/garbage-in-garbage-out-gigo – 5.07.2024.

Sato M., Apple, Anthropic, and other companies used YouTube videos to train AI, The Verge, 16.07.2024, [on-line] https://www.theverge.com/2024/7/16/24199636/apple-anthropic-nvidia-salesforce-youtube-videos-training-data-copyright – 20.08.2024.

Schultz J., 9 ways to see a dataset: What can LAION teach us about copyright law?, „Knowing Machines”, [on-line] https://knowingmachines.org/9-ways-to-see/LAION-copyright – 5.07.2024.

Shumailov I., Shumaylov Z., Zhao Y., Papernot N., Anderson R., Gal Y., AI models collapse when trained on recursively generated data, „Nature” vol. 631, 24.07.2024, https://doi.org/10.1038/s41586-024-07566-y.

Spence R., Bifulco A., Bradbury P., Martellozzo E., DeMarco J., Content moderator mental health, secondary trauma, and well-being: A cross-sectional study, „Cyberpsychology, Behavior, and Social Networking” 2024, vol. 27, no. 2, https://doi.org/10.1089/cyber.2023.02.

Steyerl H., Mean images, „New Left Review”, iss. 140/141, Mar/June 2023.

Vincent J., Discover the stupidity of AI emotion recognition with this little browser game, „The Verge”, 6.04.2021, [on-line] https://www.theverge.com/2021/4/6/22369698/ai-emotion-recognition-unscientific-emojify-web-browser-game – 14.09.2024.

Zuboff S., Wiek kapitalizmu inwigilacji. Walka o przyszłość ludzkości na nowej granicy władzy, tłum. A. Unterschuetz, Warszawa 2019.

Published

2025-03-03

How to Cite

Krawczyk, L. (2025). Machine-designed statistical renderings, or visual culture in the service of artificial intelligence. AUPC Studia Ad Bibliothecarum Scientiam Pertinentia, 22, 532–560. https://doi.org/10.24917/20811861.22.31

Issue

Section

Artykuły / Articles